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Abstract 

An analysis of the intensity errors from imperfectly 
spherical crystals with an inhomogeneous incident X- 
ray beam is presented. The crystals are considered to 
have either no absorption or strong absorption. The 
inhomogeneity of the incident beam profile is represen- 
ted by three possible models: (a) a Lorentzian, (b) a 
Gaussian and (c) a second-order Taylor series expan- 
sion. The results are compared with intensities for 
electron density studies from five crystals. 

1. Introduction 

The necessity for precise intensity measurements of X- 
rays diffracted by a crystal has increased with the 
interest in electron density studies. The conditions 
which must be met to obtain useful results from 
metallic systems are more restrictive than those in light 
atom systems due to the presence of absorption in the 
material. A common approach to reducing systematic 
errors in heavy-atom systems is to try to prepare a 
sample in the form of a sphere. However, the shapes of 
crystals obtained are seldom truly spherical. In a 
previous publication (Vincent & Flack, 1979a), we 
have estimated the intensity variations among equiva- 
lent reflections due to absorption to be expected from 
imperfectly spherical crystals. The predicted intensity 
variations seem to be smaller than those currently 
obtained in a real experiment. We have thus been 
drawn to analyse the effects due to beam inhomo- 
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geneity and crystal miscentring jointly with absorption 
from imperfectly spherical crystals. 

2. Relationship between intensity and shape variations 

In order to investigate changes in diffracted intensity 
due to variations in shape, we need to calculate the total 
intensity (energy) diffracted by a crystal of given shape 
and then derive intensity changes for changes in shape. 
The integrated reflection intensity, p, from an 
infinitesimally small block of volume 6V of a crystal is 
given by 

p = Q  ~v, (1) 

where Q contains the Lorentz-polarization factors, 
structure amplitude squared and some fundamental 
physical constants (International Tables for  X-ray 
Crystallography, 1967). p is related to the total amount 
of energy diffracted (E) by 

p = Eog/I o, (2) 

where o9 is the angular velocity of rotation of the 
crystal and I 0 is the intensity of the incident X-radiation 
falling normally on unit area per unit time. Combining 
(1) and (2) we find 

E = (Q/og) Io 6V. (3) 

For a particular reflection under fixed measuring 
conditions, Q/o9 is a constant. The total energy 
diffracted by a finite crystal may be obtained by 
© 1979 International Union of Crystallography 
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integrating (3) in the kinematical approximation (loss 
of energy in the incident beam due to diffraction 
assumed negligible) to give 

g e r y s t a l  ~-- (O/eg) f I o dV. (4) 
v 

A more useful property here is the total energy 
diffracted per unit volume of the crystal (tp); thus 

(o = ( Q / w ) ~  f Io dV, (5) 

v 

where V is the volume of the crystal. 
To apply (5) to the prediction of intensity variations 

of imperfectly spherical crystals in an inhomogeneous 
beam, we proceed as follows. Consider a (perfectly) 
spherical crystal of radius R. For a non-absorbing 
sample, (5) may be applied directly to obtain the total 
diffracted intensity per unit volume as a function of R, 
viz (o(R). Differentiating tp with respect to R, we find 
the change in intensity &p for a change in radius 6R. 
However, as tp is a measure of diffracted intensity per 
unit volume, 5R is an approximation to a change at 
constant volume and may thus be usefully interpreted 
as a measure of a change in shape rather than a change 
in volume. In this sense 5R measures the scatter in the 
radii of the deformed sphere. Hence we have 

d~p 
5~0 = - -  5R. (6) 

dR 

As the relative errors of ~p and R are of more interest 
experimentally, (6) may be rearranged to give, 

T = 

To emphasize that 6~0 and ~R are related to experi- 
mental variations, we now write them as a., and o" R to 
give 

( R  d~0) 
a~,l~o= - - ~  oR~R, (8a) 

o r  

--R drp 
f l=  --(a l~o)l(oRIR ) -- - -  (8b) 

(0 dR 

fl thus measures the relative intensity error with respect 
to the relative radius error. (5) and (8) are the basic 
equations to be applied to a model of the incident beam. 

3. Models of the incident beam 

A suitable functional representation of the beam 
incident upon the sample has to be chosen. We have 
chosen three simple models which may be used to 
represent the incident beam of our measuring ap- 

paratus. Vincent & Flack (1979b) give the X-ray 
intensity measured at the counter through a pinhole at 
the sample position for several radiations mono- 
chromatized by the 002 reflection of graphite on a 
commercial four-circle diffractometer. An analysis of 
the beam shape is given by Vincent & Flack (1979b). 
In the horizontal direction (x axis) the beam is very 
broad, whereas a definite peak is observable in the 
vertical (y axis) direction. We have chosen to represent 
this situation by the product of two functions, one of 
which, dependent only on x, is a constant, whilst the 
other, dependent only on y is a Lorentzian curve, or a 
Gaussian curve or a shape which may be represented 
by a second-order Taylor expansion about the origin. 
Thus 

I l = at/[b 2 + (y - -  C)2], (9a) 

Ig = ( a g / a k / ~ )  exp [ - ( y  - c)2/2ty2], (9b) 

y2 
I t=  1(0) + yl'(O) + - -  1"(0), (9c) 

2 
where c represents the peak position, and for the 
Lorentzian (9a), a t b -2 is the peak height and 2b the full 
width at half height, whereas for the Gaussian, 
ag/aV/2--~ is the peak height, tr represents the standard 
deviation of the profile and the full width at half height 
is 2.3540. The units of b, c, o andy  are those of length 
and the units of a t and ag are chosen so that I t and I~ 
will be the energy of X-radiation falling normally on 
unit area per unit time. For convenience we define 

e t = R / b ,  rl t=c/b,  e g = R / a  and r/g=c/o,  (10) 

where R is the radius of the crystal under consideration. 
Thus e and r/are respectively relative measures of the 
size of the crystal and of the beam miscentring with 
respect to the incident beam width. Where the context 
makes it clear which type of beam profile is being 
considered, the subscripts on e t, ~g, tit and r/g will be 
dropped. Our subsequent analysis will also assume that 
the beam is non-divergent. This makes the models, of 
course, somewhat crude but they are some of the 
simplest with the essential property that we wish to 
investigate, that of being inhomogeneous. 

The Taylor series expansion has been included to 
produce simplified forms of the error estimates for the 
Lorentzian and Gaussian profiles, valid for small 
parameter values. This allows ready calculation and 
shows clearly the expected shapes of the error curves. 
Further, the Taylor series expansion produces for- 
mulae, suitable for any functional representation of the 
beam profile, which do not contain any integrals 
needing to be evaluated. 

4. Intensity error calculations 

In the following section, the models of the incident X- 
ray beam outlined above will be applied in the 



calculation of intensity errors for some cases that are of 
experimental interest and that we have found to be 
amenable to analytical or numerical evaluation. 

4(a) Case of inhomogeneous beam and imperfectly 
spherical crystal with no absorption 

Substituting (9) into (5) we obtain 

1 f dV 
opt = (aQ/og) ~ b 2 + (Y _ c) 2 , (1 la)  

v 

%= (aQ/o~)(1/crV'~)-- ~ f exp 
v 

( l i b )  

× 
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Fig. 1. Diffraction geometry for the case of an inhomogeneous 
beam and imperfectly spherical crystal with no absorption. 
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Fig. 2. Curves off l  as a function of  e at fixed values oft/. Case of a 
non-absorbing imperfectly spherical crystal in an inhomo- 
geneous beam with a Lorentzian profile. 

if (or= (QlaJ)---~ [I(0) + yI'(O) + (_v2/2)I"(0)1 dV. 

v 

( l l c )  

As the incident beam intensity is constant at constant y, 
we may perform the integration in (11) by cutting the 
crystal up into circular discs perpendicular to y as 
shown in Fig. 1. Thus with V = Jz~R 3, d V = zrr 2 dy, and 
r 2 = R 2 _y2 ,  (11) becomes 

3 R R 2 __y2 

~ o , = ( a Q / ~ ) ~  f b 2 + - ~ - c )  2 dy, (12a) 
--R 

.O7 
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Fig. 3. Curves off l  as a function of  e at fixed values of r/. Case of a 
non-absorbing imperfectly spherical crystal in an inhomo- 
geneous beam with a Gaussian profile. 

/ Y  A R  RSa 

/I ×= 

Fig. 4. Diffraction geometry for the case of an inhomogeneous 
beam and imperfectly spherical crystal with strong absorption 
and Bragg reflection at 0 = 0 °. 
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3 
~0g = 4R s 

x f (R 2 _ y2) exp 

- - R  

(Y-2-~a c)2-]dy, (12b) 

R 3f 
~ot= (Q/m) ~ [I(0) + yI'(O) + (y2/2)I"(0)1 

- R  

× ( R  2 __y2) dy .  (12c) 

Performing the integral in (12a), followed by 
substitution in (8) one obtains 

4(b) Case of  inhomogeneous beam and imperfectly 
spherical crystal with strong absorption and reflection 
a tO=O 

We may again use (11). We further assume that the 
absorption is so strong that diffraction can only take 
place from the surface of the pseudosphere. Under this 
restriction we may approximate the diffracting volume 
of the crystal to a ring in the x -y  plane of width AR and 
thickness Az. This is shown in Fig. 4. 

1 + ( e - - r / )  2] 
6e -- (e 2 -- 3 r/2 + 3)[arctan (e + r/) + arctan (e -- r/)] + 3 r/In 

1 + ( e +  r/) 2 

1 + ( e -  r/)2] 
2e - (c 2 - r/2 + 1)[arctan (8 + r/) + arctan (e - r/)l + r/In 

1 + ( e  + r/) 2 

(13) 

where e and r/ are defined by (10). Fig. 2 shows f 
plotted as a function of e at various values of r/. 

The integral in (12b), followed by substitution in (8), 
which involves a differentiation, were carried out 
numerically by Simpson's rule and with the approxi- 
mation 

dr# A~0 
- -  _ - -  A R  = 0.001R. 
dR AR ' 

Fig. 3 shows f as a function of ~ at various values of r/. 
Evaluating the integral in (12c), followed by 

substitution in (8), one obtains 

- R  2 I" (0) 
flit- • (14) 

5I(0) 

Equation (14) may be used to check the results for fit 
and fig. 

For a Lorentzian and a Gaussian, we obtain respec- 
tively from (9a) and (9b) 

I" (0)  2 (1 - 3r/2) 
m 

I(0) b 2 (1 + r/z)z ' 
(15a) 

and hence 

I " ( 0 )  1 
I ( 0 )  - -  o 2 (1 - -  r/2), ( 1 5 b )  

2eZ(l - 3 r/z) 

f t =  5(1 + r/z)2 ' (16a) 

~r8 (1  - -  r/z), ( 1 6 b )  fg = l  2 

which are valid for small values of 8 only. Equations 
(16) do however predict the quadratic behaviour of fl as 
a function of 8 seen in Figs. 2 and 3. 

Thus we have 

V =  2 rLR AR Az, d V = R A R A z d ~ t  

and y = R s i n ~  

and substituting in (11) we obtain 
n/2 

1 f d ~  
~o i = (aQ/o~)- b 2 (R sin (~- + C) 2 ' 

- , ~ / 2  

(17a) 

. t 8  

. re  

"q, ol" / 

: 0 5  

: 0 4  

p : 0 5  

.oo .os . i o  . I s  ,~o .c,s .~o . ~  ,4o .4s .so 

8 
Fig. S. Curves o f f l  as a function of e at fixed values of r/. Case of a 

strongly absorbing imperfectly spherical crystal in an inhomo- 
geneous beam with a Lorentzian profile and Bragg angle 0 = 0 °. 
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~o~= (aQlaJ)( l l a x ~ )  (1/~z) 
n/2  
f (R sin ct--c)  2 

x exp -- da, (17b) 
2G 2 

--7t/2 

rt/2 

~ot=(Q/o))- [I(0) + RI'(O)sina 
-~/2 

+ ½R 2 I " ( 0 )  s in2a]  da. (17c) 

W h e n  c = 0, integration of  (17a) and substitution in (8) 
gives 

8 2 

i l l -  1 + 8  2.  (18 )  

In the general  case of  c 4= 0, integration of  (17a) and 
(17b) followed by differentiation in (8) were carried out 
numer ica l ly  as in case 4(a). The curves of  fl as a 
function of  8 are shown in Figs. 5 and 6. Equat ion (17c) 
yields 

- R  2 I"(o) 
f i t -  - -  - - ,  (19) 

2 I ( 0 )  

which for small  values of  e gives 

f i t  = 82 (1 - -  3172) 
(1 + /72) 2 ' (20a) 

and 

by use of  (15). 

8 2 

fl~--- -~- (1 - -  r/2), ( 2 0 b )  

/. 
, i  

.,. ............. 77:o0 /.,' 

/~ . . . . . . .  r / :ol  ,,L'", 
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/./.' 
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,~" 

.~  ~ "  " 

1 

8 
Fig. 6. Curves offl as a function of e at fixed values of q. Case of a 

strongly absorbing imperfectly spherical crystal in an inhomo- 
geneous beam with a Gaussian profile and Bragg angle 0 = 0 °. 

4(¢) Case of inhomogeneous beam and imperfectly 
spherical crystal with strong absorption and reflection 
at 0 = zU2 

Again  we use (11). Wi th  strong absorpt ion at 0 = 
zU2, we assume the diffracting volume of  the crystal  to 
be a spherical  surface shell of  uniform thickness Az, as 
shown in Fig. 7. Thus  we have 

V = 7tR 2 Az, d V = dx dy Az, r E ~--- R 2 __ y2,  

and substituting in (11) we obtain 

R r 

~Ol = ( a Q / c o ) ~  ~R 2 b 2 + 0 '  - c) 2 d x  dy 
--R 0 

2 ,~ ( R 2  _ y 2 ) 1 / 2  

(aQ/og) 
~zR - - S  J b 2 -t- ( y  - -  C)  2 d y ,  (21a) 

--R 

~og= (aQ/co)(1/o~(E/zd~ 2) 

x f_/(R 2 _y2)1/2 dy, (21b) 

--R 

R 
2 

Ot=(Q/w) -~  f [I(01 + yI'(O) 
--R 

+ (y2/2)I"(O)](R2--y2)l/2dy. (21c) 

Equat ions  (2 l a )  and (2 lb)  were evaluated numerical ly  
in the same way as case 4(a). The graphs  of  fl are 
shown in Figs. 8 and 9. Evaluat ion of (21c) leads to 

R2 I " ( 0 )  
fl -- - - ,  (22) 

4 I (0)  

which for small  e gives 

e 2 (1 - 3#/2) 

fit 2 (1 + r/2)2 ' (23a) 

X 

by use of  (15). 

8 2  

fig = -~- (1 - r/z), (23b) 

and 

Fig. 7. Diffraction geometry for the case of an inhomogeneous 
beam and imperfectly spherical crystal with strong absorption 
and Bragg reflection at 0 = 90 °. 
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4(d) Case of  a crystal wobbling in an inhomogeneous 
beam 

We assume a very small crystal which is moving 
linearly along y from - d  to +d. The mean total energy 
diffracted by the crystal is thus given by 

(o =(QV/o)) ~ Io(Y ) d dy, (24) 
- - d  - -  

and the mean square total energy by 

- 

~ 2  _~_ ( Q 2  v 2 / 0 . ) 2 )  f i 2 ( y )  d d y .  ( 2 5 )  

- d  

The relative intensity variation may be written as 

o , / I=  [tp - -5-  (~)21"2/~, (26) 

and substituting (9), (24) and (25) into (26) we obtain 

(aJI)l  = [arctan ( ~ -  r/) + arctan (~ + r/)] -1 

~(~-  ,7) ~(~ + ,7) 
X + 

1 + ( ~ -  r/) 2 1 + (~  + t/) 2 

+ ~[arctan ( ~ -  r/) + arctan (~ + r/)l 

- [ a rc t an (~-  r/) + arctan(~ + r/)12~ ~/2 
) 

where ~l = d/b. 

,j 

(27a) 

~=OC 

=04 

zO5 

. oo  
.0o  .o~  . t o  . ts z o  . z 6  .ao  .a,5 .4O .4S .~0  

Fig. 8. Curves offl  as a function of e at fixed values of r/. Case of a 
strongly absorbing imperfectly spherical crystal in an inhomo- 
geneous beam with a Lorentzian profile and Bragg angle 0 = 
90 ° . 

For the Gaussian distribution the integrals were 
evaluated numerically by Simpson's rule with the sub- 
stitution ~g = d/a. Graphs of a,/ l  as a function of ~ and 
r/are shown in Figs. 10 and 11. Equation (9c) leads to 

(1 [ d / ' ( 0 ) ] 2  1 [dzl"(O)]Zl'/z, (27c) 
(O'/ht: 3t l(O)J +4-5 / - - - ~ J  ; 

valid for small values of d. From (27c) one obtains 

4~2 /12 

(° t / I ) l= 3(1 + r/2) 2 

4~4(1 _ 3r/2)2 ) 1/2 

+ r/2) 4 ] , (28a) 45(1 + 

(Gt/l)g = ( ~ 3  "r/2 + ~4(1 --/~2)245 
112 

(28b) 

The approximate forms of o~/l in (28) show the change 
from quadratic to linear behaviour on increasing the 
value of r/from 0. 

5.  E x a m p l e s  

The data given in Tables 1 and 2 are for crystals 
prepared for electron density studies. The intensities are 
of high quality and much more than the asymmetric 
region of reciprocal space has been measured. The alloy 
and oxide samples were ground to as near spherical 
in shape as could be obtained. This is not the case with 
the fumaric acid crystal which is as-grown and has well 
developed faces. The mean radius and its variance were 
estimated by measuring the distances between opposite 
corners and between opposite faces. 

............ W:oo 
. .  - . . . . . .  r / : o l  / ,  

. . . . . . . . . .  "~:0 2 / ' . .  

. . . . . . . . . . .  -9=o3 *',i~/ 
.07 # S ; t ,  

/~ ! ,04 ~,," 
,,/, fi!~ 05 
a; 

/// 

.O4 !~ 

/ , '  
s.~t 

A.~" 
.C,2 

.~  .1~ olO .ts o~ .~  ~ .~  .,~ .45 .~  .~  .1~ 

Fig. 9. Curves offl  as a function of e at fixed values of tl. Case of a 
strongly absorbing imperfectly spherical crystal in an inhomo- 
geneous beam with a Gaussian profile and Bragg angle 0 = 90 °. 
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Fig. 10. Curves of at/I as a function of ~ at fixed values of r/. Case 
of a miscentred small crystal in an inhomogeneous beam with a 
Lorentzian profile. 
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Fig. 11. Curves of al/I as a function of ~ at fixed values of r/. Case 
of a miscentred small crystal in an inhomogeneous beam with a 
Gaussian profile. 

The measurements of the incident beam parameters 
were obtained as described by Vincent & Flack 
(1979b). The incident beam profile has a shape between 
a Lorentzian and a Gaussian. We have thus given in 
Table 2 error estimates based on both of these forms 
for comparison. The incident X-ray beam charac- 
teristics were measured at some time other than just 
prior to data collection and may thus be different from 
those operational during data measurements. This is 
particularly the case for the beam offset parameter, c, 
which is the distance between the optical centre of the 
diffractometer and the incident beam peak position in 
the vertical or y direction. On our machine the mono- 
chromator inclination, which is the primary adjust- 
ment affecting c, is controlled by a coarse adjusting 
system without an entirely satisfactory locking mec- 
hanism. Hence any mechanical  vibration of a regular or 
impulse nature is likely to put the monochromator  
slightly out of adjustment. Further, in the method used 
to measure the incident beam profile it is difficult to 
define with precision the position of the optical centre. 
We have thus been pessimistic in our calculations of the 
intensity errors by using the value of r/between 0 and 
the values given in Table 1 which gives the largest 
intensity error. Inspection of the curves in the figures 
shows that a value of r/ = 0 was used for the 
calculations of cases 4(a), (b) and (c) whereas the 
values of Table 1 were used for case 4(d). 

The value of d used in the calculation of ~ = d/b or 
dig for the wobbling crystal in an inhomogeneous 
beam is based on the optical resolution of the telescope 
used to centre the sample. One division of the grid of 
this telescope corresponds to 25 lam. If we suppose that 
the grid can be read to ¼ of a division in centring a 
crystal we obtain the value of d given in Table 1. 

The intensity error due to the interplay of absorption 
and non-sphericity has been estimated by the method of 
Vincent & Flack (1979a). For the inhomogeneous 
beam coupled with a non-spherical crystal, we have 
calculated both the no absorption and the strong 
absorption cases for the ScSi and the oxide crystals as 
they probably represent some intermediate case. For 
fumaric acid, it seems irrelevant to give the strong 
absorption values. The values given in Table 2 were 
calculated from the formulae derived from the Taylor 

Table 1. Parameters defining the incident X-ray beam 

Full width at half height (mm) 1-0 
Lorentzian parameter, b (mm) 0.5 
Gaussian parameter, a (mm) 0.42 
Beam offset, c (mm) 0.125 
Movement, 2d (mm), of crystal 

due to wobbling O- 013 
r/(Lorentzian) (c/b) 0-25 
~/(Gaussian) (c/a) 0-29 

(Lorentzian) (d/b) 0.013 
(Gaussian) (d/a) O. 015 
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Table 2. Error calculations on five crystalline samples 

Fumaric 
Compound ScSi Ti203 V203 V203 acid 

Radiation used Mo Ka Ag Ka Ag Ka Ag Ka Mo Ka 
Linear absorption coefficient (/~) mm -~ 5.203 3-680 4.467 4.467 0.072 
Mean radius of the crystal R (mm) 0.025 0.079 0.131 0.079 0-128 
Radius variation a R (mm) 0.0013 0.0008 0.0025 0.0025 0-038 
offR (%) 5.1 0.95 1.91 3.16 29.4 
/tR 0.13 0.29 0.59 0.35 0-01 
e (Lorentzian) = R/b 0.05 0.16 0.26 0.16 0.26 
e (Gaussian) = R/o 0.06 0.19 0.31 0.19 0.31 

Error estimates (ol/1) (%) 
Absorption with aspherical crystal, 0 = 0; 0 = 90 ° 0.07; 0.06 0.04; 0.03 0-21; 0.16 0.17; 0-14 0.04; - 

Aspherical crystal with: inhomogeneous beam of profile: 
4(a) no absorption Lorentzian; Gaussian 0.005; 0-004 0-01; 0.007 0.05; 0.04 0.03; 0.02 0-79; 0.56 
4(b) strong absorption 0 = 0 ° Lorentzian; Gaussian 0.01; 0.009 0.03; 0.02 0.13; 0.09 0.08; 0-06 - 
4(c) strong absorption 0 -- 90 ° Lorentzian; Gaussian 0.006; 0.005 0.01; 0.009 0.07; 0-05 0-04; 0.03 - 
4(d) wobbling crystal Lorentzian; Gaussian 0.35; 0-25 0.35; 0.25 0.35; 0.25 0-35; 0.25 0.35; 0.25 

Data intensity measurements 
Internal consistency factor J (%) 2.4 1.1 2.1 1-4 2.4 
Number of reflections contributing to J 86 515 603 602 1127 

series expansion of the incident beam, as the values of 
~, r/and ~ are quite small. 

Finally in Table 2 we give values of the internal 
consistency factor J of the data set where J is defined 
by 

~. I u 

Zllil/n~ being the arithmetic mean of n i symmetry- 
related reflections where Xi is the sum over all 
reflections with n~ > 2. 

The internal consistency values are for intensities 
corrected for the effect of extinction, if this was found 
to be significant in the crystal. 

6. Discussion 

The total experimental error for our intensity measure- 
ments should be obtained by taking the square root of 
the sum of the squares of the individual and supposedly 
independent errors. If we do this on our test crystals we 
obtain values considerably smaller than the internal 
consistency factor of the respective data sets even 
supposing worst case values (i.e. strong absorption at 0 
= 0 ° with a Lorentzian profile). 

Looking at the contributions to the total error, we 
see that the wobbling crystal always produces a signifi- 
cant contribution to the intensity error despite our 
conservative estimate of the amount of wobble taking 
place. We have taken no account in our estimate of d of 
movements due to a lack of mechanical rigidity in the 
goniometer head, fibre or crystal support or to 
vibration of the crystal-supporting fibre due to tur- 
bulence from a stream of cold nitrogen gas. If the 
amount of wobble supposed to be taking place is 
doubled or tripled, the relative intensity errors increase 

proportionally and the total errors approach those 
found experimentally in the internal consistency fac- 
tors. Hence with an inhomogeneous beam, mechanical 
instability in the goniometer head, fibre and crystal 
support can be important sources of error. 

For our test samples it is only with the fumaric acid 
crystal that there is an important error contribution due 
to the interplay of beam inhomogeneity and non- 
sphericity of the crystal. The alloy and oxide crystals 
have been carefully prepared to be as nearly spherical 
as possible and our calculations show that there would 
be very little advantage in making them either smaller 
or more spherical. 

The intensity errors may always be reduced with a 
more homogeneous beam of X-rays. One way of 
achieving this is to do away with the monochromator. 
For example, Coppens et al. (1974) now use only fl- 
filtered radiation with the diffractometer working in the 
step-scan mode. It is clear from our calculations that 
such a technique should produce about a 1% 
diminution in the internal consistency factor of data 
from the fumaric acid crystal, and 0.35% from the 
oxide and alloy crystals. Moreover, the error reduction 
could be even higher if the amount of wobble has been 
seriously underestimated as suggested above. 

This work was partially sponsored by the Swiss 
National Science Foundation under project No. 2.786- 
0.77 and 2.004-0.78. 
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